Единственный способ определить границы возможного - выйти за эти границы.
Артур Кларк
—айт дл¤ девушек  бесплатные онлайн тесты  онлайн тесты бесплатно 
Мир Тестов       Интересное          Мистика            

Планетология

Дата публикации: 2011-11-12 23:27:00

Планетология

 

 

Планетология — это комплекс наук, изучающих планеты и их спутники, а также солнечную систему в целом и другие планетные системы с их экзопланетами. Сфера её интересов включает в себя очень разнообразные объекты, от микрометеоритов до газовых гигантов. Планетология изучает физическиесвойства, химический состав, строение поверхности, внутренних и внешних оболочек планет и их спутников, а также условия их формирования и развития.
Планетология относится к междисциплинарной области науки, первоначально развившейся из наук о Земле и астрономии. Но на сегодняшний день она включает в себя множество дисциплин, таких как планетарная геология (вместе с геохимией и геофизикой), физическая география (геоморфология и картография, применительно к планетам), атмосферные науки, теоретическая планетология и исследование экзопланет. Есть и другие дисциплины, смежные с ней, например, физика космоса, астробиология и науки изучающие влияние Солнца на планеты солнечной системы.
В планетологии связаны между собой экспериментальные и теоретические отрасли. Данные наземных наблюдений могут позже проверяться и уточняться с помощью экспериментальных исследований космического пространства: в первую очередь автоматическими космическими аппаратами, а также с помощью дистанционного зондирования и сравнительного изучения метеоритов в земных лабораториях. Большую роль играет теоретический подход, который включает в себя использование компьютерного и математического моделирования.
Учёным, занимающимся планетологией, приходиться разбираться в смежных с ней отраслях, таких как астрономия, физика и геология. На сегодняшний день существует довольно много научно-исследовательских центров и университетов, на которых есть кафедры, занимающиеся вопросами планетологии, а также существует несколько научных институтов по всему миру, работающих в данной области. Ежегодно проводится аренда офиса СПб - выгодно несколько крупных научных конференций и публикуется масса журналов, посвящённых данной тематике.
История планетологии начинается с древнегреческого философа Демокрита, который (как известно из трудов Ипполита) говорил:
«Существует безграничное множество миров, различающихся по размеру и в некоторых из них нет ни Солнца, ни Луны, в то время как в других их больше, чем у нас и они больше по размеру. Промежутки между мирами не созданы равными, здесь они больше, там меньше, некоторые из них растут, другие процветают, третьи распадаются, здесь они рождаются, там умирают, уничтожаются при столкновении друг с другом. И некоторые из миров голые, без животных и растений, покрытые водой.»
В более позднее время новой вехой становления планетологии и астрономии стали телескопические наблюдения. Начало им положил итальянский астроном Галилео Галилей в 1609 году. Направив свой самодельный телескоп на небо он открыл четыре крупнейших спутника Юпитера, горы на Луне, впервые наблюдал кольца Сатурна и многое другое. В том же 1609 году он продолжал изучение лунных ландшафтов. По итогам наблюдений лунной поверхности он записал о ней:




«Поверхность Луны не вполне гладкая, лишённая каких-либо неровностей и идеально шарообразная, как полагает одна философская школа. Напротив эта поверхность очень неправильная, испещрённая ямами и поднятиями, в точности как и поверхность Земли, которая повсюду испещрена высокими горами и и глубокими долинами.»
а также предположил, что и другие небесные тела обладают такой же поверхностью как и Земля.
Прогресс в деле строительства телескопов, улучшение их характеристик, позволил приступить к более детальным исследованиям поверхности других небесных тел, в частности Луны. Луна была первоначально главным объектом для изучения из-за близости к Земле, что позволяло достаточно хорошо изучить её поверхность даже в те несовершенные телескопы, которые существовали на тот момент. Сначала главным инструментом изучения Луны и планет были оптические приборы, позже уже в XX веке появились радиотелескопы, ну и наконец автоматизированные космические аппараты, с помощью которых учёные смогли в непосредственной близости заниматься изучением космических объектов.




В результате на данный момент Солнечная система уже относительно хорошо изучена, учёные примерно представляют стадии её формирования и развития. Тем не менее, существует много нерешённых вопросов , поэтому необходимо совершить ещё немало новых открытий и отправить в космос большое количество космических аппаратов, чтобы по-настоящему понять строение и свойства тел Солнечной системы.
Здесь есть две отрасли: теоретическая и наблюдательная. Наблюдательные исследования в первую очередь связаны с изучением малых тел Солнечной системы с помощью оптических и радиотелесков. Они позволяют выяснить такие характеристики как форма тела, вращение, состав и рельеф поверхности и т. п.
Теоретические исследования связаны с динамикой: использование законов небесной механики применительно к телам Солнечной системы и внесолнечным планетным системам.
Больше всего данных планетология о телах, которые располагаются в непосредственной близости от земли: Луна и две соседние с Землёй планеты Венера и Марс. Луна стала первым объектом для исследований. Её изучали теми же методами, которые были разработаны ранее для изучения Земли.
Геоморфология исследует особенности строения поверхности планет и реконструирует историю их формирования, делает заключения о физических процессах, которые действовали на данную поверхность. Планетарная геоморфология включает в себя изучение нескольких типов поверхностей:




Геологическая история поверхности может расшифрована за счёт сопоставления пород, залегающих на разной глубине. Так как согласно принципу суперпозиции (en:Law of superposition) породы в разрезе следуют в порядке их образования: в верхних слоях залегают самые молодые, а в нижних — самые древние. Этот закон был открыт Нильсом Стенсеном и впервые применён им при изучении пластов Земли. Так, например, на стратиграфические исследования, выполненные астронавтами в программе Апполон и снимки КА Лунар орбитер были затем использованы при создании стратиграфической колонки (en:Stratigraphic column) и геологической карты Луны.
Одна из основных проблем при создании гипотез о формировании и эволюции объектов Солнечной системы является отсутствие образцов, которые могли бы быть проанализированы в крупных лабораториях, со всеми необходимыми инструментами, на основании всех доступных знаний земной геологии, которые могли бы быть здесь применены. К счастью, в распоряжении учёных имеются образцы доставленные с Луны астронавтами Аполлона и советскими луноходами, а также образцы астероидов и Марса, в виде метеоритов, выбитых когда-то из их поверхности. Некоторые из них были сильно изменены в результате окислительных процессов в атмосфере Земли и инфильтрационного действия биосферы, однако некоторые метеориты, например, те что были найдены в последние десятилетия в Антарктиде почти что не подверглись серьёзным изменениям.
Различные типы метеоритов, прилетевшие из пояса астероидов охватывают практически все части структуры астероидов, есть даже такие, которые образовались из ядра и мантии разрушенных астероидов (Палласит). Сочетание геохимии и наблюдательной астрономии также дают возможность проследить из каких именно астероидов был выбит данный метеорит.
Известно довольно мало марсианских метеоритов, которые могли бы предоставить сведения о составе марсианской коры, к тому же неизбежный недостаток информации о местах их образования на поверхности Марса дополнительно усложняет задачу построения теории эволюции марсианской литосферы. Всего до 2008 года было выявлено около 50 метеоритов с Марса.
За время программы Аполлон астронавтами было привезено на Землю более 350 кг лунного грунта, плюс ещё несколько сотен граммов было доставлено советскими луноходами. Эти образцы позволили составить самый полный отчёт о составе другого космического тела Солнечной системы. Всего до 2008 года было выявлено около 100 лунных метеоритов.
Космические зонды позволяют собирать информацию не только в области видимого света, но и в других областях электромагнитного спектра. Планеты можно охарактеризовать различными силовыми полями, такими как гравитационное и магнитное поле. Изучением этих полей занимается геофизика. Изменение ускорения КА, пролетающих рядом с планетой, позволяет гравитационные аномалии над различными областями планеты и, как следствие, сделать определённые выводы о составе и характеристиках пород в этих областях.
Подобные измерения проводились в 1970-х годах посредством лунных орбитальных аппаратов над лунными морями, которые позволили выявить концентрацию массы в районе Моря дождей, Моря Ясности и Моря Кризисов.
Если магнитное поле планеты достаточно велико, то его взаимодействие с солнечным ветром образует магнитосферу вокруг планеты. Исследования космическими зондами магнитного поля Земли показали, что оно простирается в сторону Солнца на огромное расстояние в 10 радиусов Земли. Солнечный ветер — это поток высокоэнергичных заряженных частиц (в основном протоны и электроны), истекающих с солнечной короны, благодаря магнитному полю они обтекают Землю и движутся дальше вдоль магнитного хвоста Земли, который может простираться дальше в космос на сотни радиусов планеты в направлении перпендикулярном к Солнцу. В магнитосфере существуют области (радиационные пояса), в которой накапливаются и удерживаются проникшие в неё заряженные частицы.
Атмосфера является важной переходной зоной между твёрдой поверхностью и внешними радиационными поясами. Не все планеты имеют атмосферу: её существование зависит от массы планеты и расстояния от Солнца. Кроме четырёх газовых гигантов, почти все планеты земной группы имеют атмосферу (Венера, Земля, Марс). Атмосферы также обнаружены у двух спутников Титана и Тритона. Кроме того, очень разреженной атмосферой обладает Меркурий.
Скорость вращения планеты вокруг своей оси заметно влияет на потоки и течения в атмосфере. Особенно хорошо это видно на примере Юпитера и Сатурна, в атмосферах которых формируются системы полос и вихрей. Тоже самое можно увидеть и на примере планет земной группы, в частности на Венере.
В планетологии часто используется метод сравнения, чтобы дать более полное понимания изучаемого объекта, особенно когда по нему не хватает прямых данных. Сравнение атмосферы Земли и Титана (спутника Сатурна), развитие внешних объектов Солнечной системы на разных расстояниях от Солнца, геоморфология поверхности планет земной группы, — вот лишь несколько примеров использования данного метода.
Основным объектом для сравнения остаётся Земля, т.к. она лучше всего изучена и на ней можно провести все возможные измерения. Использование данных исследования Земли в качестве аналога для сравнения с другими телами, больше всего распространены в таких науках как планетарная геология, геоморфология и науки об атмосфере.
Более мелкие семинары и конференции по конкретным областям планетологии проводятся по всему мире в течение всего года.

Связаться с разработчиком  Связаться с разработчиком 

Дизайн сайта:dim3d@mail.ru
Copyright © 2016 MirTestoff.ru
  Карта сайта